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Effect of topographic convergence on erosion processes
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Abstract. We consider a basin made of an impermeable soil, eroded by water flow (not by
weathering). Our approach is based on standard deterministic models, within a ‘streamlet’ picture
where the flow is always directed downhill. The central assumption is that erosion occurs only
when the surface shear stress τ (due to water flow) is above a certain threshold τc . Some features of
the landscape are simplified by the existence of τc , and do not depend on detailed assumptions on
the behaviour above τc . In particular, if the initial landscape is a U-shaped valley, we can construct
the ‘line of attack’—i.e. the border of the eroded regions—by a simple prescription.

1. Principles

The oral version of this paper covered both problems of dry sand and wet sand. For the written
version, in view of the restrictions on size, we select only one topic related to wet systems:
namely erosion processes.

A deterministic description of water basins implies a detailed knowledge of many erosion
and sedimentation processes [1, 2]. Erosion may be due to weathering conditions (e.g. the
impact of rain droplets) [3] or to tear-off by surface flow: here we focus on the latter case. Early
mechanical models [4] postulated a local sediment fluxF which would be uniquely determined
by the local slope |∇z| = θ and the local water flux Q. This is somewhat oversimplified, since
F is a sum from upstream contributions which occurred at different slopes and smaller fluxes.
Another important feature, particularly emphasized in [5], is that erosion occurs only when
the tangential stress due to flow,

τ = ρghθ (1)

is above a certain threshold τc. In (1) ρ is the water density, g is the gravitational acceleration
and h is the local water thickness.

Our aim in the present article is to emphasize two facts.

(1) The existence of a threshold stress is enough to fix the ‘line of attack’, i.e. the border of
the eroded regions after the onset of rain on a given landscape. We show this in section 2,
with two landscapes (an inclined plane and a tilted U-shaped valley) where topographic
convergence is important. The concept of a line of attack is well known. It provides
one answer to the classical question: ‘where do channels begin?’ raised originally by
Montgomery and Dietrich [6, 7].

(2) Consider now a mature basin, experiencing erosion, sedimentation (plus a slight uplift
velocity U allowing for steady-state regimes). We show in section 3 that there is a good
surprise: at small U , the flow velocity in the eroded regions remains always very close to
the threshold value Vc (associated with τc). It is then possible to predict some universal
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features of the profiles, which are not sensitive to the details of the erosion process beyond
threshold.

Points (1) and (2) are simple illustrations of the ideas described in [5], but they do bring some
simplification. Let us list here the main assumptions involved.

(a) The solid is impermeable: rain flows only at the surface, with a local thickness h, a local
velocity V and the resulting local flux Q = V h.

(b) The material is not sensitive directly to droplet impacts, but is eroded only by surface
flows, when τ > τc.

(c) The hydrodynamic flow is turbulent, and is locally in a steady state with the following
relation between velocity and slope |∇z| = θ :

V 2 = kghθ (2)

where k is a numerical constant. Of course, (2) assumes that the slopes vary very smoothly,
i.e. that curvature effects are negligible.

(d) The flow velocity points downhill. This neglects certain lateral exchanges between
‘streamlets’, which are weak (see the appendix). We do assume that there is indeed a
well defined downhill direction at all points. Mathematically, this corresponds to θ �= 0
everywhere. Physically, this means that our landscapes do not have any lake-forming
regions.

(e) The critical stress τc is dependent only on V , not on the slope. If we accept (1) and (2) the
local stress is τ = k−1ρV 2. Then the threshold stress τc corresponds to a fixed threshold
velocity Vc:

ρV 2
c = kτc. (3)

For laboratory experiments, we would need rather small values of Vc (say 10 cm s−1) and
this implies very weak solids (τc ∼ 10−4 atm = 102 dynes cm−2).

2. Flows below threshold and the line of attack

The main feature of our systems, emphasized in [5], is the convergence of streamlets, as
indicated in figure 1. Consider an element dl along an isolevel line. This collects the water
from an upstream area dA and must have

V h dl = p dA (4)

where p is the rainfall per unit area and unit time.

Figure 1. Definition of the collection factor dA/dl.
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If we compare this to (2), we arrive at the basic relation

V 3 = kgθp
dA

dl
. (5)

We call dA/dl the collection factor. The role of the collection factor was emphasized long
ago [6].

We shall now illustrate (5) with two examples.

2.1. Inclined plane

Here the slope is constant θ = θ0 and the collection factor is simply equal to the distance x

from the crest line. We may thus rewrite (5) in the form(
V

Vc

)3

= x

L
(6)

where L is a characteristic length

L = V 3
c

kgθ0p
. (7)

The top part of the landscape (0 < x < L) is not eroded. The line of attack corresponds
to x = L. The length L is inversely proportional to the rainfall p and to the slope θ0. It is also
proportional to V 3

c ∼ (τc)
3/2.

For a laboratory experiment, with Vc ∼ 10 cm s−1, θ0 ∼ 1, and p ∼ 10−3 cm s−1,
equation (7) leads to L ∼ 10 m.

2.2. U-shaped valley

2.2.1. Geometry. We assume that the initial landscape is parabolic (figure 2(a)):

z = z0 − θ0x +
y2θ0

2R
. (8)

The lines of equal altitude correspond to

y2 = 2R

(
x − z0

θ0

)
(9)

and the length R is their radius of curvature near the median line (y = 0). The local derivative
dy/dx along an isolevel line is given by

dy

dx
= R

y
. (10)

The flow lines (normal to the isolevel lines) are ruled by
dy

dx
= − y

R
(11)

y = a exp

(
xs − x

R

)
(12)

where xs corresponds to the starting point (at y = a).
The area A collected at level x inside a strip of small width y near the median is the

hatched area of figure 2(b), and

A = a

[
x − R ln

(
a

y

)
+ R

]
. (13)

Thus the collection factor (at small y) is
dA

dl
∼ dA

dy
= Ra

y
. (14)
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(a)

(b) (c)

Figure 2. U-shaped valley: (a) the landscape, (b) isolevel lines (broken lines) and flow lines
(arrows), and (c) aspect of the line of attack, separating uneroded regions (uphill) from eroded
regions (downhill).

2.2.2. Line of attack. This is obtained by imposing V = Vc in (5) and making use of (14).
For small y, the slope is θ ∼= θ0. This leads to

y = δ ≡ Ra

L
. (15)

Thus the line of attack is now parallel to the median. Equation (15) is the central result
of this section. A few comments are useful here:

• the half width δ of the eroded region is proportional to the rainfall p and is a decreasing
function of the threshold stress τc (δ ∼ τ

−3/2
c ) and

• the regimes of interest correspond to y 	 a or R 	 L.

The distance x cannot be smaller than R: if x < R, the starting point is not on the lateral
crest, but is at x = 0, and the collection factor is weaker. This ultimately leads to a shape for
the line of attack which is qualitatively represented in figure 2(c).

3. Mature basins

Our aim now is to describe both erosion and sedimentation by an extension of the same ideas.
Let us call R(x, y, t) the local amount of moving solid (measured in terms of an equivalent
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height). To make things more palpable, we now write down a specific model for erosion and
sedimentation:

∂z

∂t
= −K

Vs

(V 2 − V 2
e ) + w

R

h
+ U. (16)

The first term describes erosion, and assumes that the rate is proportional to τ − τc. This
linear law may be insufficient in practice, as pointed out in [5, ch 6]. It turns out, however that
more general power laws lead to the same qualitative conclusions. Thus, for simplicity, we
present our results with the linear model. The second term describes sedimentation, assumed
to be proportional to the volume fraction of solid R/h in the flow. The last term is a very small
uplift velocity. K is a material constant. It is dimensionless (and small), w has the dimensions
of a velocity: it will in general depend on V , but for our purposes all these features are not
essential.

Consider first the one-dimensional case where z depends only on the down slope coordinate
x. The general aspect with uplift is shown in figure 3. There is a top region with no erosion,
no sedimentation, and an uplift velocity U . This stops at a certain line of attack (x = xa(t)).
Below this point (x > xa) we can have a steady-state solution with ∂z/∂t = 0. We also have
a book-keeping for the sediment, which in a steady state is produced at a rate U in all of the
interval x − xa

VR = U(x − xa).

Comparing this with (4), we see that
R

h
= x − xa

x

U

p

and (16), in a steady state, gives us

V 2 − V 2
c

Vc

= K−1U

(
1 +

x − xa

x

W

p

)
. (17)

Figure 3. Predicted one-dimensional profiles for a mature basin with a slow uplift velocity U ,
(A) unperturbed region and (B) domain of erosion and sedimentation.

The crucial point is that U is geologically small: thus V is necessarily close to Vc. This
remains true if we replace (16) by more realistic power laws.

This allows us to find immediately the steady-state profile: using (5) with V = Vs , we
obtain

θ ≡ −dz

dx
= θ0

L

x
. (18)
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Thus the profile is expected to be logarithmic:

z(x) = z1 − θ0L ln
x

L
(19)

where z is a constant, which depends on the boundary conditions downstream. It is important
to notice that the line of attack (x = xa) moves slightly upward during time. On the line, we
have

z = Ut + z0 − θ0xa = z1 − θ0L ln
xa

L
(20)

and this is an implicit equation for xa(t).
These considerations can be extended to more general basin shapes: x is replaced by

dA/dl and x − xa is replaced by dÃ/dl, where Ã is the area collected between the line of
attack and the level of observation.

4. Concluding remarks

(1) The main predictions from the model are: (a) the original position of the line of attack
(equation (7) or (15)); (b) the steady-state profile, in the one-dimensional case, with a
slope inversely proportional to the distance from the crest (equation (20)). The latter
differs significantly from field observations (see [5, section 1.2.10]). This may mean that
the weakly cohesive systems which we have in mind are very different from natural basins,
but hopefully these laws could be compared to laboratory experiments. The solid material
must be weak (low Vc). However, erosion should not be dominated by the direct impact
of rain droplets. This is feasible is the droplet diameter is small; for d = 1 µm, the fall
velocity of the droplets is of order 1 cm s−1, and this is much smaller thanVc (∼10 cm s−1).
Thus erosion by flow may be the leading process.

(2) An obvious question is related to the stability of the flows that we have described. Starting
from an inclined plane as in section 2, can we have valleys forming spontaneously? The
answer can be obtained from our discussion of U-type valleys: ultimately, no linear
instability is expected in the region x < L, because to start erosion we need a concentration
factor dA/dl, which is significantly larger than x, and this would impose a valley system
of finite amplitude.

(3) Another open question, with the U-shaped valleys, concerns the evolution of the ‘gully’
(of initial width 2δ) which appears near the median line. We postpone the discussion for
a later study.

(4) The mechanism of erosion initiation is definitely not the unique process responsible
for channel-like patterns. However, in some simple systems, the deterministic models
(initiated by Smith and Bretherton [4], Rodriguez-Iturbe and Rinaldo [5] and others) do
lead to scaling predictions which are universal—i.e. independent of the detailed laws for
erosion and sedimentation. The only crucial feature is the existence of a velocity threshold.
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Appendix. Exchanges between streamlets

The limits of the streamlet approximation appear clearly if we think of a flow on an inclined
plane, with constant flux V0h0 and constant velocity. Assume that in a small region near the
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starting point (z = z0) the height h is increased h = h0 + h1(y). Then the corresponding
‘streamlet’ will spread out. Ignoring capillary effects (gravity regime) we expect a transverse
flow velocity:

Vy ∼ −V0

θ0

∂h1

∂y
(A1)

leading to a diffusion equation

∂h1

∂t
= −V0

∂h1

∂x
+

−V0h0

θ0

∂2h1

∂y2
. (A2)

If your streamlet was infinitely narrow at the start, after a distance x downhill, it then
reaches a width yd of order

yd ∼
(
h0x

θ0

)1/2

. (A3)

All our discussion of the convergence in a U-valley (section 2) assumed that the
corresponding yd is smaller than δ. For the U-valley problem, the uphill length of a flow
line is of order R (rather than x) and thus yd ∼ (h0R/θ0)

1/2.
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